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ABSTRACT 
This paper, which is one of a series of four, contributes to the proof of the 
following 
THEOREM. A finite group admitting a coprime fixed-point-free automorphism a 
of order rst (r, s and t distinct primes) is soluble. 
Here we prove that in a minimal counterexample to the above theorem the set 
of a- invar iant  Sylow p-subgroups  P, such that C p ( ~ ' ) ~ l  for all c ~ l ,  
generate  a soluble subgroup. 

10. Introduction 

This paper is the third in a four-part series, whose aim is the proof of 
[Theorem 1.1; 3]. Our section numbering continues that of [3] and 14]. We recall 
from section 3 that Lo= (PIP a-invariant Sylow subgroup of G of type 

= {1, 2, 3}). As stated in section 1, Part III is concerned with proving, under the 
assumption that (G,(a))  satisfies Hypothesis III, the following result. 

THEOREM 10.1. Lo is an ot-invariant soluble subgroup of G. 

By (2.4) this is equivalent to showing that every pair of c~-invariant Sylow 

subgroups of G of type • permute. Hence the proof of Theorem 10.1 amounts 
to showing that the existence of o~-invariant Sylow subgroups of n-p type I, II, 
III, or IV in G leads to contradictory situations (for the definition of n-p type 
see [Definition 7.11; 4]). 

In the remainder of this section we collect together certain observations 

concerning ,~-invariant Sylow subgroups of various n-p types. In section 11, 12 
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and 13 we examine, respectively, the cases when "G possesses only a-invariant 
Sylow subgroups of n-p types I, II and V; only types III, IV and V, and finally, 

all possible n-p types. 

We continue to denote the a-invariant Sylow 2-subgroup of G by T. During 

this section P and Q will denote (respectively) a-invariant Sylow p- and 
q-subgroups of G of type ~.  

LEMMA 10.2. Let Q be of n-p type II. Then Q cannot, additionally, be of n-p 

type I, III or IV. 

PROOf. Let P be an a-invariant Sylow p-subgroup of G of n-p type I with 
respect to Q. So ~t~(p,q)={P, Np(Q)Q}. By Lemma 7.9, without loss of 
generality, Z ( P ) =  Z(P)~T <= Ne(Q), and so Q~, = 1. If, furthermore, Q was 
either of n-p type I or n-p type III, then, from Lemmas 7.9 and 7.10, 

Z(Q)  <= Q~,~j where i, ] E ~ ,  iF  j. But then [Z(Q),  Np(Q)] = 1 by (2.3)(xi) which 

contravenes the form of ~R(p, q). Hence, we infer, Q cannot be of n-p type I or 
III. If Q were additionally of n-p type IV, then, by Lemma 7.10, Q* = Q~, some 

i E ~.  Since Qo~ = 1, this implies ai = p, against Lemma 7.9(e). This finishes the 

proof of the lemma. 

LEMMA 10.3. Suppose P is of n-p type I with respect to Q. Let M be a 

non-trivial a -invariant nilpotent Hall i~-subgroup of G with (l.t, p) = (tx, q) = 1. I f  

PM = MP and OM = MO, then 
(i) Q (PM) = Co~eM~(M)( Op(PM) A Ne( Q )); and 
(ii) either No(M1) = 1 for all non-trivial ol-invariant subgroups M1 o[ M or 

Op(PM)<= Np(Q) and p = 2. 

PROOF. From Lemma 7.9 ~r)2(p,q)= IP, Np(Q)Q} with P* <-Np(Q). 
(i) From Lemma 5.8(d) (i) holds provided Q ( P M ) ~  G. So we may suppose 

Q(PM) = G. Now O~(QM) ~°M~P = O~(QM) j" <= P M ~  G and Hypothesis III 

forces Q,,(QM) -- 1. Hence M = Nu(J(Q))Cu(Z(Q))  by (2.6). Clearly Ne(Q) 
permutes with both NM(J(Q)) and NM(Z(Q)) and consequently Np(Q) per- 
mutes with (Nu(J(Q!)), NM(Z(Q))) = M. Using (2.14)(ii) now yields the desired 

conclusion. 
(ii) If No (M~) ~ 1 for some non-trivial a-invariant subgroup M~ of M, then (i) 

implies, because of the shape of ~lR(p, q), that Op(PM)<= Ne(Q). Hence we also 

have p = 2. For otherwise, by Corollary 4.5, P -- O,(PM)P* <= Ne(Q), contrary 

to PQ ~ QP. This verifies (ii). 

LEMMA 10.4. Suppose P is of n-p type I with respect to Q. If  W is an 
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a-invariant Sylow w-subgroup of G of type ~, p~ w and PW = WP, then 
w o  = O w ,  O p ( P W )  <- _ N p ( Q )  and p = 2. 

PROOF. By Lemmas 3.14 and 10.3(ii) it suffices to show that WQ = QW. 

Suppose WQ~ QW and argue for a contradiction. Combining Lemmas 7.8 and 

10.2 we see that W must be of n-p type I with respect to Q. Thus ~l~(p, q ) =  

{P,N~(Q)Q} and ~J~(w,q)={W, Nw(Q)Q} with P*<-_Ne(Q) and W *-< 

Nw(O). We may suppose that (say) 2 ~ w. Using (2.14)(ii) and Corollary 4.5 we 

may deduce that W = Cw(N~(Q))Nw(O). But then the shape of T~(w, q) and 

Lemma 3.14 force W <= Nw(Q), which is the required contradiction. 

LEMMA 10.5. Suppose T (the a-invariant Sylow 2-subgroup of G) is of type 
• . If T is of n-p type IlI with respect to P, then P cannot also be of n-p type I. 

PROOF. We shall show that P being of n-p type I leads to a contradiction. Set 

tf)~(2, p) = {TY, XP}. Without loss of generality we may suppose that To =< X and 

P~, P~ <= Y. Hence, from Lemma 7.10, Y =< P~ = P* ~ P, and Z(T) = Z(T)o~ <= 
X. 

Suppose P is of n-p type I with respect to (say) Q. Thus P*<= Np(Q) and 

~(p, q) = {P, Np(Q)Q}. Clearly T ~  Q. 

First we consider the possibility that TQ~ QT. Since Q is of n-p type II, Q 

cannot be of n-p type I, III or IV by Lemma 10.2. In particular, T must be of n-p 

type I with respect to Q, and so P*, T* <-<_ N~(Q). But then one of P* < Y and 

T * <  X must hold which is impossible. Therefore we have TQ = QT. Since 

P* ~ Y, Nr(J ( Q )), G ( Z (  Q )) <= X and so T = 02( TQ )X by (2.6). Suppose that 

(OdTQ))p = 1. Thus, using (2.11), [O2(TO),[O,011= 1. By Lemma 7.9(0 
[Q, p] ~ 1 and so, employing (2.3)(viii), 

02( TQ ), P, <= (Nc([Q, p])){2,p}. 

Since 02(TQ)Z X and Pp = P * Z  Y, we conclude that (02(TQ))p~ 1. Hence, 

by Lemma 7.10(c), Z(O2(TQ))<-<_X. Set Z(O2(TQ))=Z. Note that Z ~ I .  

Applying Lemma 5.1(a) (since Pp, P, <-Y) yields P = YCe([Z,o~']). Since 

neither P = Y n o r  02(TQ) ~ X is permissible, Z = Z~. Consequently [Z, Q] = 

1 by (2.3)(xi). Considering (No(Q))~2,p} we see that Z normalizes Oe(PX)N 
N,,(O) (>(Op(PX))*). So, by (2.14)(ii), 

o . (ex )  = G (PX) n Nd O )). 

Because O d Y O ) ~ X  , Up(Z)<-_ Y < = P . < N ~ ( O ) ,  and so, using (2.20), P =  

YO,(PX)<=Np(Q), whereas PQ~ QP. This is the desired contradiction, so 
completing the proof. 
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In Lemmas 10.6 and 10.7 we assume P to be of n-p type I with respect to Q, 
and, by Lemma 7.9, may suppose Z(P) <-- Po~ and (hence) Qo~ = 1. 

LEMMA 10.6. (i) P permutes with 5C~. 
(ii) Q permutes with L23. 
(iii) L12 = L13 = 1. 

(iv) Q permutes with at least one of L2 and L3. 
(v) If  LiP = PL~ and L~Q = QL~ where i = 2 or 3, then L = 1. 

(vi) If L23 ~ l, then PL23 ~ L~3P. 

PROOF. (i) From Lemma 3.13(iii) [Po~, ~ ]  = 1. Hence P, 5g~ < C~(Z(P)), so 
giving P~I = LGP. 

(ii) Since [Qp, L23]=1 by Lemma 3.6(iii), ~o(L23)~1.  Hence, because 
~o(Lz3)L23 admits cry" fixed-point-freely, QL23--L23Q by (2.8) and (2.21)(v). 

(iii) We show that L,2 = 1; a similar argument gives L~3 -- 1. First we demon- 
strate that QL~2 = L~zQ. Suppose QL~2 ~ L~2Q. By Lemma 3.6(iii) [Q ,  L~z] -- 1. 

Thus Z(Q)<=~o(G2) and so Z(Q)  < Q, by Lemma 5.1(b). Lemma 7.9(e) 

forbids such a situation, and so QL12 = Ll2Q. Since [Q, L~2] = 1, O,~(PL~2) = 1 
because of the shape of 9)~(p,q). Observe, as Z(P)<=Z(PLI2) and Z(P)<= 
Np(Q), that G ¢  Q(PL~2), and therefore p -- 2 by Lemma 5.8(e)(ii). Employing 
Corollary 4.5 (for PLy2) gives L~2_- < G,, which; by (2.8) and Lemma 6.1, is 

contrary to (G,(ot)) satisfying Hypothesis III unless L12 = 1. 
(iv) Since cry" acts fixed-point-freely upon ot-invariant {q tO zr2 U ~r3}- 

subgroups of G, [L2, Q,] = [L3,  Q,~] = 1 by Lemma 3.6(ii). Therefore LzQ~ QL2 
and L3Q~ QL3 would give Z(Q)<= Qo~ by Lemma 5.1(b), contrary to Qo~ = 1. 

Hence (iv) holds. 
(v) Suppose Li~  1 and take i =2.  Then, since [L2, Q.] = 1, P<=Np(Q) by 

(2.7), the form of ~¢)~(p, q) and Lemma 10.3(ii). Therefore L2 = 1. 

(vi) This may be established by arguing as in (iii). 

LEMMA 10.7. If L~Q~ QL,, then 
(i) 2 E 7rt; and 

(ii) L* <= NL~( Q ). 

PROOF. We first demonstrate that L* <-_ NL~(Q) pertains. Assume 

L * ;~ NL,(Q). Thus, without loss of generality, L~. ~ ~L,(Q). Note that Z(Q)<= 
~o(G) is untenable here. For Z(Q)<= ~o(G) implies Z(Q)<= Qp contrary to 

Lemma 7.9(e). Thus Oq(Q~L~.) = 1. Hence Z(Q~) <= Qp by (2.13)(iii I which gives 
the untenable [Z(Q~), P.]  = 1 (by (2.3)(xi)). Therefore L * <= NL,(Q). Combining 
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(2.14)(ii) and Lemma 3.14 with the fact that ~o(L , )= 1 yields O=,(PLI) = 1 (P 
and L~ permute by Lemma 10.6(i)). Consequently 2 ~ zrl by Corollary 4.5. 

For Lemmas 10.8 and 10.9 we assume T is of type ,tt and of n-p type III with 

respect to Q. Set 9J2(2, q ) = { T Y ,  QX}, and suppose Tp<=X and 0¢, QT-- -< Y 

pertains. 

LEMMA 10.8. (i) TLP~ = ~,T.  

(ii) O permutes with L,2, L,3 and L23. 

(iii) L,2 = Ll3 = 1. 
(iv) O permutes with at least one of L2 and L3. 
(v) If L23 ~ 1, then L23T~ TL23. 

PROOF. (i) From Lemma 7.10(d) Z(T)  <- To. and so (C~(Z(T))){2.=,}>= T, ~,  

by Lemma 3.13(iii). So (i) holds. 
(ii) Since Q~ = 1 (by Lemma 7.10), (L23)~,..)= 1 and 1 / Qp = C o ( L 2 3 ) ~  

~o(L23), (2.8) and (2.21)(v)yields QL23 = L23Q. 
Next we show that QL,2 = G2O. Suppose that OLd2 ~ L22Q, and argue for a 

contradiction. Now 1 ~  Q~ = Co(L~2) (by Lemma 3.13(iii)) and ~92(rr,2, q) = 

{Q, G2No(L,:)} with, since q / 2 ,  No(L,:)= Co(LI2)(No(L,2))o by (2.11). Since 

L,2 fi 1 and {G, (a))  satisfies Hypothesis III, combining (2.8) and Lemma 6.1, we 

have L~2 ~ (L~2). = (L~2)*. From (i) we have TL~2 = Lj2T. Therefore Corollary 

4.5 dictates that O.~2(TL,2) fi 1 (clearly 2 ff~ 7r~2). Considering 

(N~ (O~,2(TL,2))){2.q} >= Co(L,2), Z 

we obtain Co(L,2)<= Y <= Oo. So No(L,2) = Co(L,2)(No(L,2))o <= 0o. Since 
Co(No(L,2))~No(L,2), (2.3)(xii) forces O =Oo  which contradicts Lemma 

7.10(b). 
Therefore we conclude that L~2Q = OLd2. That L,3Q = OL,3 follows by 

similar reasoning. 
(iii) Suppose L~2/1 .  By Lemma 6.1 L~2 /L ,2 .  From parts (i) and (ii) 

TL,2 = LlzT and QL12 = L~2O. Thus 0~,,2(TL12)~ 1 by Corollary 4.5 and hence 
T ( L , 2 0 ) ~  G. Now Lemma 5.8(f) (since O~ =< Y and L,2¢ = 1) predicts that 

either O=,~(TL,2) = 1 or q =2 .  Since neither possibility holds, we have a 

contradiction. Therefore L,2 = 1; again similar arguing yields L~3 = 1. 

For parts (iv) and (v) see Lemma 10.6(iv) and (v). 

LEMMA 10.9. If  T L ~  L~T where i = 2  or 3, then GO = QG. 

PROOF. Suppose the lemma is false and argue for a contradiction. Without 

loss of generality set i = 2. 
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Since O~, = 1 = (L2)o~ and [L2., O.] = i, Lemma 3.6(ii) implies [L2, O,] = 1. 

Hence ~)~(7r2, q) = {L2No(L2), O} by Lemma 5.3 and (2.19). So Q ,  O, --< No(L2) 
whence O* < No (L2). 

Since, by hypothesis, L2T# TL2 recourse to Corollary 7.4 yields the four 

following possible situations. 

(i) L* < ~ ( T ) ;  
(ii) T. _-< ~r (L : )  and L2~ _-< ~ ( T ) ;  

(iii) Tp < ~T(L2) and L2, _-< ~ ( T ) ;  and 

(iv) T'~,,> <= ~T(L2). 
We consider each case in turn. 
(i) Here (see Lemma 7.5) ~ ( T )  = N~(T). From Lemma 7.10 Z(T) <= T,,, and 

consequently [Z(T),N~(T)] = 1 by (2.3)(xi). This produces the impossible 

1 # Z(T) < ~T(L2) = 1. 
(ii) Now Z(T) <= To~ _<= T~ < ~T(L~). Hence, as L2p _-< ~ ( T ) ,  appealing to 

Lemma 5.1(a) gives L2 = ~,(T)C~(Z(T)) whence L2 = ~ ( T ) ,  a contradiction. 

(iii) Since O * =  < No(L2) and O * Z  Y, we have, with the aid of (2.7), 

~T(L2) = (~T(L2) n X)Off~T(L2)L2). 

We consider two cases depending on whether Od~T(L~)L2) is trivial or 

non-trivial. First suppose Off~T(L2)L2)=I. Then ~T(L2)<=X. Clearly 

LffXO)# G and so ~xo(L2) = ~x(L2)~o(L2) = ~T(L2)No(L2). Now O * =  < 
No(L2) and, by Lemma 7.7(b), Z(T)-<_ ~T(L2). Therefore, using (2.14)(ii), we 

have 

Oq (OX) = (Oq (OX) (3 No (L2))Co~ox)(Z(T)) 

=< No (L2), 

since Co(Z(T))<= Y<-_ O~ <-_No(L~). But then Q = Q*O~(OX)<=No(G), a 
contradiction. 

So now we consider the possibility Off~T(L2)L2)# 1. Hence (see (2.21)(ii)) 

Z = Z(O2(T~2(T) )  ) <= CT(O2(~T(L2)L2)) <= I~T(L2). 

Because L 2 = l ,  by (2.12), [Z,~r] centralizes O,,2(~T(Lz)L2). Neither 

OffT~(T))  < ~T(L2)nor O,~2(~T(L2)L2)<~(T) can hold and so Z < T~. 

Applying (2.3)(xi) we obtain [Z, ~ ( T ) ]  = 1. Therefore Z <= NT(L2) by (2.20). By 

cons ide r ing  (NG(L2)){2,q} and imitating the arguments for the case 

02(~T(L2)L2) = 1 with Z in place of Z(T) we obtain the contradiction Q = 

No(L2). 
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(iv) Since Z(T)  <= T~ <= T~o~ <= ~ ( L , ) ,  this case may be dealt with as in (iii). 

Thus we have shown that L,T~ TL (i = 2 or 3) implies that L Q  = QLi. 

11. c~-Invariant Sylow subgroups of n-p type I and II 

We introduce the following hypothesis. 

HYPOTHESIS 11,1. G possesses a-invariant Sylow subgroups of n-p type I 

and II but none of n-p type III and IV. 

THEOREM 11.2. Hypothesis 11.1 is incompatible with Hypothesis III. 

We present the proof of Theorem 11.2 in a series of lemmas. The incompati- 

bility of the two hypotheses will follow from a particular factorization of G. The 

road to this factorization will be paved by Lemmas 11.3 to 11.6, during which we 

assume P and Q to be a-invariant Sylow subgroups of type • with P of n-p 
type I with respect to Q. Also we assume Z(P)<= Po~ holds; hence Qo~ = 1. 

LEMMA 11.3. Suppose PLi = LiP for some i ~ ~,  and let W be an ~-invariant 
Sylow w-subgroup of type • which permutes with P. Then WL~ = L~W. 

PROOF. Supposing WLi~ LiW we shall deduce a contradiction. Thus p ~  w. 

From Lemma 10.4 we have WQ = QW, Op(PW) <-_ Ne(Q) and p = 2. 

If L * _-< NL, (W) were to hold, then, since 2 ~ 7r,, Lemmas 5.8(e)(ii) and 7.50) 

imply that Nw(J) = 1 for all non-trivial ~-invariant subgroups J of P. But this is 

contrary to Lemma 3.14, and therefore L* ~ NL,(W). 

Now suppose i = 1. Consequently, since p = 2, W~'~¢> _<- Nw(L~) by Corollary 
7.4 and Lemma 7.6. Moreover, from Lemma 10.7 we also have QL~ = L~Q. 
Since Q,¢ = 1, applying Lemma 5.8(0 to Q, L, and W (note (QW)L,  ~ G) yields 

that Q(QL~)= 1, Hence Q = Q~ by (2.13)(i). Lemma 7.9(f) forbids such a 

situation, and so we have verified the lemma when i = 1. 

We now consider the case i = 2 .  Since L*;~N~(W),  W<~>=~w(L2)- 
Nw(L2) by Corollary 7.4. By Lemma 3.7, because all cr-invariant {q U 7r2}- 

subgroups of G admit ~rz fixed-point-freely, [L2, Q¢] = 1. Then the shape of 

932(p, q) dictates that Np(J) <-_ Ne(Q) for all non-trivial a-invariant subgroups J 

of Lz. Hence, by (2.7), P = Op(PL2)Ne(Q), and therefore Op(PL2)Z Ne(Q). 
Employing (2.14)(ii) and (2.26) gives 

Op(PL2) = Co~(pL~)(~.(Q)){Op(PL2) f3 Ne(Q)). 

Consequently ~t~[Q) = 1, and so, in particular, QL2# LzQ. Therefore, by 

Corollary 7.4, Q~p~>-<_ ~o(L2) = No(L2). 
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It is asserted that either Q, _-< Qp or Ow(WQ)<- Nw(Lz) holds. Clearly No(L2) 
and Nw(L2) permute and so (since Wp <-_ Nw(L2) and qP 2) 

Ow ( WO ) = C o,~wo)([ No (L 2), pl)(Ow ( WO ) (q Nw ( L 2)) 

by (2.14)(i). Recalling that O¢ --< Co(L2) yields the assertion. By Lemma 7.9(e) 

O, -<- O, cannot occur. Thus Ow(WO) <= Nw(L2) which implies, by Corollary 4.5 
and Lemmas 4.6 and 7.6(d), that W = W~. Hence P = Op(PW)P~ by (2.3)(ix), 

and thus P = Op(PW)P~ <= Ne(O)P* <= Np(O), which is untenable. This con- 

tradiction shows that WL2 = L2W. 
The case i = 3 may be established by arguments analogous to those used for 

i = 2. The lemma now follows. 

LEMMA 1 1.4. Suppose Li permutes with P, where i = 2, or 3. Then LiL1 = L1Li. 

PROOF. As usual we suppose the lemma is false, and argue for a contradic- 

tion. Without loss of generality we may set i = 2. Using Lemma 3.7 we have that 
[L2, O,] = 1. Hence, because of the shape of ~02(p, q), 

(11.1) O,,2(PL2) = 1. 

Using (2.7), (2.14)(ii) and (2.26) (as in the proof of Lemma 11.5) gives 

P = Cp(~L:(O))Ne(O), whence (using (2.20)) 

(11.2) O L 2 /  L20, ~fC(q,'n'2)={No(L2)L2, 0}  and O~,,,)<--_No(L2). 

If OLI ~ L,O, then, since L~L2J LaL~ by hypothesis, Theorem 8.1 implies 

OL2 = L20, which is contrary to (11.2). Therefore 

(11.3) OL, = L,O. 

By Lemma 5.1(b) ~ ( L , ) f q  Z(L2)<= L2~. Therefore, if L2, =< ~ ( L , )  holds, 

then Z(L2)* = Z(L2)p. Combining i l l . l )  and Corollary 4.5 then gives Z(L2) = 
Z(L2)p. Since Co(L2)/1 ,  Z(Q)_-  < No(L2) and so, by (2.3)(x) and the shape of 
~(q,  Tr2), Z ( O ) =  < Op. This is against Lemma 7.9(e), and thus L 2 , ~ ( L , ) .  
Hence L1, =< ~L,(L2). 

Since Oo =< No(L2) and L,, = 1, (2.14)(ii) and (2.25) give 

Oq(OL,) = CO4OL,)(~L,(L2))(Oq(OL, ) fq No(L2)). 

(11.4) Either Oq(OL~)_- < No(L2) or Co(~LI(L2)),. 4 1 = C~(L~.). 

If Co(~L,(L2))=I, then clearly Oq(QL1)<=No(L2). Since L1 ~L, (L2) ,  

C~(L~,) /1  and the shape of ~02(q, ~r2) would force Oq(QL~) <= No(L2). 
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Suppose Oq(QL,)<-<_ No(L2) holds. Then q = 2 for otherwise, using (2.13)(i), 

Q = Oq(QLj)Oo <= No(L2). Since pf i  2 and, by Lemma 10.6, PLI = LIP, Lemma 
10.3(ii) implies that No(J) = 1 for all non-trivial c~-invariant subgroups J of L~. 

Hence, using Corollary 4.5 on both QL~ and O~L~., we have L~ = L* = LI~, 
which contradicts L,~-<_ ~L , (L2) /L , .  Consequently Oq(QL,)g~ No(L2). 

So, from (11.4), Co(~L,(L2))~I and hence, by Lemma 10.3(ii), p = 2 .  

Consequently L2 is star-covered by (11.1) and Corollary 4.5, and ~L~(L2) = 

NL,(L2) by Lemma 5.7. Hence, by (2.3)(xi) and (11.4), L2/~(L2)=L2 = 
(i2)p(/~.2), = Cc~(L,~)(/22), =(/~2)7. Thus L2=L2. Since Z(O)<No(L2) and 

L2.. = 1, we now obtain Z(Q) = Z(Q), ,  by (2.3)(x). 

This contradictory state of affairs concludes the proof of Lemma 11.4. 

LEMMA fl.5. If PG ~ GP where i = 2, or 3, then QG = GO. 

PROOF. Deny the result and, without loss of generality, suppose i = 2. Thus 

PL2~ L2P and QL2~ L2Q. Observe that L* _-< ~ _ ( P )  is impossible. For L* =< 
~ ( P )  implies that g)2(p, ~'2) = {N~(P)P, L~} by Lemma 7.5 whereas Z(P) <= Po, 
gives, using (2.3)(xi), that Z(P)<= Cp(N,(P))<= ~(L2). 

We now show that Z(P)<=~p(L2). If P, <=~p(L2), then clearly we have 

Z(P) < 3°~(L2). So, since L* ;$ ~,(P),  we may assume Pp =< ~PIL2) and L2. < 

~ , ( P )  in which case Z(P)<= ~(L,_) by Lemma 7.7(b). 

Since O~(L2fPp(L2))~ 1 and, by Lemma 3.7, [L2, Q , ] = I ,  by considering 

(No (O~2(L2~p(L2))))~p,q} together with the form of ~92(p, q) we obtain ~p (L2) < 

Np(Q). If Qo <- ~o(L,_), then, since Z(P)p = 1 and ~ o ( P )  = 1 =< ~o(L2), Lemma 

5.10(c) (with L = P, M = Q and N = L2) predicts that ~z(O) f3 Z(P) = 1 where 
Z = ~,.(Lz). However  Z(P) <-_ ~p(L~) <= Np(Q) and so 1 ~ Z(P) <- 
~z(Q) f-I Z(P). Hence we must have L.. =< ~ ( O ) .  Since 1 ~ L2o = ~L~(Q) and 

1 ~ Q, <-_ Co (L2), q = 2 by Lemma 5.3. Hence, by Corollary 7.4 and Lemmas 7.5 

and 7.6, ~ , ( Q )  = N,(Q),  ~p(L2) = Np(L~')and ~ , (P)=< L2o.. Therefore Z(P)<- 
Np(L2) = Np(L2) f"l Np(Q) = ~,~o)(L2). Since ~ ( P )  <= L~o. <= ~ ( Q ) ,  Lemma 
5.10(c) (with L = P, M = L2 and N = Q)  again gives a contradiction. 

This completes the proof of Lemma 11.5. 

LEMMA 11.6. If Q~ and Q2 are a-invariant Sylow subgroups of G both of n-p 
type H with respect to P, then Q~Q~ = Q~Q~. 

PROOF. If Q~Q~/Q~Q,, then by Hypothesis 11.1 one of O~ and Q~ must be 

of n-p type I, contrary to Lemma 10.2. Thus Q~Q2 = Q2Q,. 

For P an a-invariant Sylow p-subgroup of G of type q~ we introduce the 

following notation: 
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Ho(p ) = ( W [ W is an a-invariant Sylow subgroup of type • and WP = PW), 

Ko(p) = ( W [ W is an a-invariant Sylow subgroup of type • and W P / P W ) .  

Also we set zr(Ho(p))= 1to(p). 

LEMMA 11.7. If rio(p) is not an a-invariant soluble Hall m~(p)-subgroup of G, 
then 

(i) p = 2; and 
(ii) there exists an a -invariant Sylow w-subgroup of G of n-p type I with w / '2 .  

PROOF. By (2.4) there must exist a-invariant Sylow u- and v-subgroups U 

and V (respectively) both of type • with UVf i  VU, UP = P U  and VP = PV. 
Note that U C  P C  V. We may suppose that U is of n-p type I with respect to V. 

So U* <_- ~'~,(V) = Nv(V).  
Suppose p C  2. Then Lemma 5.8(f) implies that Op(PV) = 1. Hence P = P* by 

Theorem 4.4, contrary to P being of n-p type I. Thus p = 2, so giving (i). Taking 

W = U yields (ii). 

COROLLARY 11.8. There exists an a-invariant Sylow p-subgroup P of G of 
type • such that Ho(p) is a soluble a-invariant Hall ~ro(p)-subgroup o[ G. 

PROOF. By Hypothesis 11.1 there exists at least one a-invariant Sylow 

p-subgroup, P, of n-p type I. If Ho(p) is not a soluble Hall rro(p)-subgroup of G 

then, by Lemma 11.7(ii), there exists an a-invariant Sylow w-subgroup of G of 
n-p type I with w ~  2 and so, by Lemma 11.7(i), Ho(w) is an a-invariant soluble 

Hall 7ro(w)-subgroup of G. The corollary now follows. 

We are now in a position to factorize G. For the remainder of this section P 

will denote an o~-invariant Sylow p-subgroup of G of type • such that Ho(p) is a 

soluble Hall subgroup of G. Further, H will denote the subgroup of G generated 

by Ho(p) and those of {L,, Ljk [ i, j, k E q~} which permute with P. Let K denote 

the subgroup of G generated by Ko(p) and those of {L,, Ljk I i, j, k E xI'} which do 

not permute with P. For Ho(p) and Ko(p) we will now write (respectively) H0 and 

Ko. 

LEMMA 11.9. G=HKwithHandKa- invar iantso lubleHal lsubgroupso[G.  

PROOF. From Lemma 10.6 we recall that Ll2 = L13 -- 1, that PL1 = L1P and 

that, if L23 ~ 1, PL23 C L23P. Thus, if L23 ~ 1, then L23 --< K. By Lemma 10.6(ii) L23 
permutes with Ko. From Lemma 11.6 and 12.4) K0 is a soluble Hall subgroup of 

G, and, using (2.4), (2.5) and Lemma 11.3, HoL~ = L1H0 is a soluble Hall 

subgroup of G. 
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Suppose both L2 and L3 do not permute with P. Then L2L3  = L3L2  by 

Theorem 8.1. Further (2.4), (2.5) and Lemma 11.5 yield that L,_Ko = KoL2 and 

L3Ko = KoL3 are soluble Hall subgroups of G. Since [L2, L23] = [L3, L23] = 1, we 
have G = HK with H and K a-invariant soluble Hall subgroups of G. 

Now suppose that (say) L2 permutes with P but L3 does not permute with P. 

Using Lemmas 11.3 and 11.4 we may infer that LzL1Ho is a soluble Hall 
subgroup of G. From Lemma 11.5 we also have that L3Ko is a soluble Hall 

subgroup of G. Therefore, in this situation, the lemma holds. 

Now we consider the case when both L2 and L3 permute with P. Then, by 

Lemma 10.6(iv) and (v), one of L2 and L3 must be trivial, and so Lemmas 11.3, 

11.4 and 11.5 give the desired factorization. 

This exhausts all the possibilities, and so Lemma 11.9 is verified. 

The next two lemmas will be used to show that the factorization obtained in 

Lemma 11.9 contradicts Hypothesis III. In these two lemmas O denotes a 

(non-trivial) a-invariant Sylow q-subgroup of Ko. 

LEMMA 11.10. (i) Suppose P L ~  LiP (where i = 2  or 3) and q~  2. Then 
~)~(p, ~r, ) = {P, Ne (L,)L, }. 

(ii) If PL23 ~ L23P and q,~ 2, then ~0"~(p, ~r23) = {P, Ne(L23)L23}. 

PROOF. (i) In view of (2.20) it will be sufficient to show that ~L, (P) = Y = 1. 

Suppose Y ~  1, and argue for a contradiction. By Lemma 5.1(d) and (2.21)(vi) 

P~,Z ~p(L,). Consequently, as P* < Np(Q),  N~(Q)Z ~, (L , ) .  From Lemma 

11.5 QLi = L~Q and hence, employing (2.6) upon OL, we have Li = YO~,(LiQ). 
Since q ~  2, [[O, a,], O~,(L,Q)] = 1 by (2.11'). From Lemma 7.9(0 O ~  O~, and 
therefore, using (2.3)(viii), we obtain 

(No ([Q, a,])){p,~,} => P~,, O~,(L,Q). 

This is the required contradiction as P~,Z ~p(L~) and O,~,(L~Q)~ Y. 
(ii) This may be established by a similar argument. 

LEMMA II.Ii. Suppose PL~ L~P where i=2  or 3 and Z(J(P))<~Np(O). 
Then either 

(i) Z(J(P))<= Np(L,); or 
(ii) q = 2 and Z(Q)  <= Q~,. 

PROOF. Without loss of generality we set i = 3. Suppose Z(J(P))~ Ne(L3) 
and q ~  2. Hence,  by Lemma 11.10, ~ ( p ,  7r3) = {P, Ne(L3)L3} and so P~'~,> =< 
Np(L3). 
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If (say) Z(J(P))~# (Z(J(P)),~)~p~>, then, by (2.9) and (2.3)(i), 

1 # [[Z(J(P))~, p], r] <= Op (P,,L3,) A Z(J(P)). 

Since L3, ~ P~,L3~ we then have 

(No (Op (P~L3,) N Z(J(P))))~,u,3, >= Z(J(P)), L3 . 

The shape of ~(p ,  ~'3) then forces Z(J(P))<=Ne(L3), contrary to  the present 
supposition. Therefore Z(J(P))~ = (Z(J(P))~)~p+ Similar argument also yields 

Z(J(P)) o = (Z(J(P))o)~,,T ~. 
By Lemma 3.13(iii) [Pp~,L3] = 1 and so (Z(J(P)))~ =1.  Consequently 

Z(J(P))~ = (Z(J(P)))~ and Z(J(P))p = (Z(J(P)))oT. Hence (Z(J(P)))* = 
Z(J(P))~. Next we demonstrate that Z(J(P)) <= P, By (2.3)( 0, ([Z(J(P)), ~-])* = 
1. Since Z(J(P)) <- Np(O), (2.9) yields [Z(J(P)), r] <= Op (N~ ( 0 ) 0 )  = C~ (Q). 
Now [L3, O~] = 1 and consideration of (NG (O~))~pu~,l implies that [Z(J(P)), ,r] <= 
Np(L3). A further application of (2.9), this time to L3Np(L3), gives 

[Z(J(P)), r] =< Op (Ne (t3)t3) = Cp (L3). 

Therefore, if [Z(J(P)),~]~I it would then follow that Z(J(P))<=Np(L3). 
Hence Z(J(P)) <= P,. 

Since Z(J(P))<= Ne(Q), clearly N e ( Q ) ~  Np(L3). Hence, using (2.6) (L~ and 
O permute by Lemma 11.5) and the shape of ~(p ,  ~'3), L3 ~L3Q. By (2.11), 
It3, [O, ~-]] = 1. From Lemma 7.9(f) [O, ~'] ~ 1 and so (using (2.3)(viii)) 

(No ([O, ~']))~po~0 => L3, P ,  

whence Z(J(P)) <-_ P, <= Ne(L3) whereas Z(J(P)) ~ Np(L3). Thus 
Z(J(P)) ;~ Ne(L3) implies that q = 2. 

Arguing as in the previous paragraph, and using (2.12) instead of (2.11), it may 
be' shown that Z(J(P));~ Np(L3) also implies Z(O)<= 0~. This proves the 
lemma. 

PROOF OF THEOREM 11.2. Suppose (G,(a)) satisfies Hypotheses III and 11.1. 

By Lemma 11.9 G = HK. First we show that 

(11.5) Z(P) <-_ Np(K). 

For any (non-trivial) a-invariant Sylow subgroup O of Ko, Z(P)( = Z(P)o~) <= 
Ne(Q). Thus Z(P)<=Ne(Ko). Suppose we have PL2~L2P. Now Z(P)<=Po~ 

L2 = N~(P) and so, by Lemmas 7.6(iv) and 7.7(g), rules out the possibility * < 
Z(P) <= Ne(L2). Similar considerations apply if PL3 ~ L3P. If PL23 ~ L23P, then 
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(as Cp(L:3)fi 1) Z(P)<= Np(L23) by Lemmas 7.1 and 11.10. Thus, whatever the 

form of K, Z(P)<= Np(K). 

Next we claim that 

" Z(J(P))p = (Z(J(P))o)~o~, Z(J(P))~ = (Z(J(P))¢)~..~, 
(11.6) 

Z(J(P))~ = (Z(J(P)),)~o~,> and Op ( H ) ~  1 cannot hold. 

Since O p ( H ) f i l ,  R = Z ( P ) A O p ( H ) ~ I .  Applying Lemma 6.3 to 
Z(J(P))(N,(J(P)))p,  and using (2.6) on H gives R <=Z(H). Then 1~  R e =  

R r'K = R K <= No(K)  by (11.1). This verifies (11.6). 

Now suppose pfi  2. Since P is of n-p type I, P is not star-covered and thus 

O p ( H ) f i l  by Theorem 4,4. By (11.6) we may suppose that (say) 

Z(J(P))o~(Z(J(P))o)<*~> Consequently, by (2.3)(i) and (2.9), Z ( J ( P ) ) N  

O, (PoQo) /1  where Q is any non-trivial a-invariant Sylow q-subgroup of Ko. 

Hence the shape of gN(p, q) forces Z(J(P))<= Np(Q), and so Z(J(P))<= Np(Ko). 

We claim that Z(J(P))<=N~(K). Since p / 2 ,  Ho = P by Lemma 10.4. If 
H = PL,, then, as [P~,, L1] = 1, Z(P)=< Z ( H )  which, by (11.5), implies that G 

does not satisfy Hypothesis III. So we may suppose that PL2 = L2P and Lz ~ 1. 

Observe, if P permutes with both L2 and L3, then K = KoL2~ and hence, using 

Lemma 7.1 and the fact that [Ko, L23] = 1, we have Z(J(P))  < Np(K). Thus, in 

order to show that Z(J (P) )  =< Ne(K), we must deal with the situation PL2 = L2P, 

L: / 1 and PL3 • L3P and deduce that Z(J(P) )  ~ ge(g3). Let Q be a non-trivial 

a-invariant Sylow subgroup of Ko. If Z(J(P) )ZNp(L3) ,  then Lemma 11.11 

asserts that Z ( Q )  <= Q, which, as [Q,, L2] = 1, implies that QL2 = L2Q. But then 

L2 = 1 by Lemma 10.6(v), a contradiction. Therefore Z(J(P))-<_ Ne(K). 

Set S = (Z(P)71 O~(H))". Note that S / 1  and that, by (2.6), S <= Z(J(P)) .  
Consequently S ~ = S un = S K <-_N~(K), and so (G,(a))  cannot satisfy 

Hypothesis III. 

Thus we may assume that the factorization in Lemma 11.9 cannot be achieved 

when p / 2 .  Hence, the set of a-invariant Syiow q-subgroups of G of type ~ ,  

with q odd, must generate a soluble Hall subgroup of G, namely Ko(Ho)> Also, 

because of Hypothesis 11.1, we have 2 E or(H0). 

(1 1.7) K(Ho)z = (Ho)~,K is a soluble Hall subgroup of G. 

Let W and Q be, respectively, a-invariant Sylow w- and q-subgroups of 

(Ho)z and Ko. So W permutes with both T and Q and Q is of n-p type II with 

respect to T. Suppose L 3 T / T L 3  (so L3<=K). We show that WL3=L3W. 

Assuming WL3/L3W we deduce a contradiction. If L* _<-N~(W) pertains, 

then Lemma 5.8(e)(ii) and the shape of ~¢)~(w, Ir3) contradicts Lemma 3.14. So 
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W~o,,>* <= Nw(L3). Since O , Z  Qp and [Q,, L3] = 1, using Lemma 5.8(b) we obtain 

Ow (WQ) < Nw(L3). By Lemmas 4.6 and 7.6(i)(d) this gives W = IV,. Employing 

(2.3)(ix) and Lemma 10.3 gives the impossible T = 02(TW)T~ <= Nr(Q). Hence 

WL3 = L3 W. Similar arguments apply if L2T~ TL2. 
Suppose  L23T~ TL23. If WL23 ~ L~_3W, then Wp <= Cw(L23). Since [Q, L23] = 1 

and Q ~  Qp, similar reasoning (and use of (2.3)(v)) gives W = W~ or W, from 

which we obtain the contradiction as before. 

Thus we have established (11.7). 

In view of (G,(a)) satisfying Hypothesis III, O~K~,(K(Ho)z)= 1. Hence, 

employing [Theorem 1; 1], we have Z(J(K))~ K(Ho)z. Since Z(J(K)) ch K it 

follows from (11.1) that Z(T)<=Nc(Z(J(K))). Because Z(T)<=Z(TL~), 
H~  HoL1. So we may suppose 1 ~ L2 < H. Lemma 10.6(iv) and (v) implies that 
H = HoLLLz. Set /-t = TL,L:. Since O~2(TLz ) = 1, we have, using (2.6), /7/= 

Na(J(T))Cn(Z(T)). Therefore U - Z(T) ~ <= ZIJ(T)), and hence 02(H) ~ 1. 
Thus we may use (11.6) for the factorization G=H(K(Ho)z,) (since 

Z(T),K(Ho)z<= N~(Z(J(K)))) to deduce that ZIJIT))<= Nr(Ko). Then, with 

the compliance of Lemma 11.11, we may obtain Z(J(T))<= Nr(K). This yields 

the contradiction 

1 ~ U G = U Ift(K(HO)2') = U K("O)2' ~ No (Z(J(K))) ~ G. 

This completes the proof of Theorem 11.2. 

12. a-Invariant Sylow subgroups of n-p type III and IV 

First we state an appropriate hypothesis. 

HYPOTHESIS 12.1. G possesses a-invariant Sylow subgroups of n-p type III 

and IV but none of n-p type I and II. 

The object of this section is the proof of 

THEOREM 12.2. Hypothesis 12.1 is incompatible with Hypothesis III. 

In section 10 certain elementary deductions were made concerning n-p type 

"I l l - IV interactions". Before tackling the proof of Theorem 12.2 we continue in 

a similar, though more involved, vein. From now until the end of Lemma 12.9 we 

assume Hypothesis 12.1 to hold. 

Throughout this section Q will denote an a-invariant Sylow q-subgroup of G 

of type q* which is of n-p type IV with respect to T. We also fix the following 

notation: Tp < ~ r ( Q ) =  X and Q~'o.r~ < ~ o ( T ) =  Y. We note that, if U is any 
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a-invariant Sylow subgroup of type qt and n-p type IV (with respect to T), then 

Tp =< ~ r ( U )  and U~,~ <-_ ~v(T). 

LEMMA 12.3. Suppose W is an a-invariant Sylow w-subgroup of G of type xp 
with w# 2. If WT = TW, then L ,W = WLt. 

PROOF. We first recall, from Lemma 10.8(i), that L~ and T permute. Further, 

by Hypothesis 12.1 and Lemma 7.8, Q and W permute. 

Supposing that Lj W# WL~ pertains we shall derive a contradiction. Now 

Corollary 7.4 predicts (since 2~{q,w}) that either L * =  < ~L,(W) or W ~ _  -< 

0,w(L,). 
First we consider the alternative L~* <_- ~L,(W). So ~(~'1, w) = {NLI(W)W, L~}. 

Employing Lemma 5.8(e)(i) (since T permutes with both L, and IV, 2 ~ ~-, and 
W(TL~)# G) yields that L~ = ~L,(W)C~,(T)= N~.,(W)CL,(T). Because of the 

shape of ~5~(7r~, w) we have Nw(J(T)) = C~(Z(T)) = 1. Consequently W ~ WT 
by (2.6). From Lemma 7.5 W,,~ = 1 and hence, since Y -> O~ '~  and T(OW)#  G, 
another application of Lemma 5.8(a)(i) gives O = YCo(W). But then W ~ WT 
implies that O = Y, against OT# TO. Therefore L* ~ ~L,(W). 

So W~.~)<=~(L,)=N~(L,).  If [O~(TW),o']#I, then (since O ~ Y )  

Lemma 5.8(c) dictates that one of Oq(OW)<= Y and T, =< X~ must hold. The 

former possibility yields that O = O*Oq(OW) = 0 *Y= Oo (since Y=< 

Op = O*) whereas O #  Oo. Whilst T~ _-< X forces TO = OT by Lemma 7.8. 
Therefore Ow(TW)<= W,, and, similarly, O~(TW)<= IV,. So [T, Ow(TW)] = 1 by 

(2.3)(xi). Also, by Theorem 4.4 and Lemma 3.3(vii), W is star-covered. Hence, 

from Lemma 7.6, Nw(L~)<= W~ = W*, and so W = W,. Clearly then we have 
W,, = 1, Ow(WT) = 1 and ~(1r, ,  w)={W, Nw(L,)L,}. 

We claim that L~O# QL,. For suppose L~Q = QL, were to hold, then 

applying Lemma 5.8(e)(i) to L~, Q and W (since W ~  <-_ Nw(L~), Q~. = 1 and 

L, (QW)#  G) yields W = Nw(L,)Cw(Q). However  Q / Q ,  = Q* means 

Oq (QG)#  1 by Corollary 4.5 which in turn forces Cw(Q)< Nw(L~), contrary to 

W L , / L ,  W. Hence the claim is verified. 

Moreover LT _-< ~Ll(O) is untenable. For L* _--< ~c~(Q) implies by (2.3)(xi), as 

~,,(Q) = NL,(Q), L, o = 1 and Q* = Qo, that [Ll~, Q.]  = [Ll,, Q,] = 1. If L,~ = 

L1., then, using Lemma 3.6, Q~.> <-_ Co(L*)= Co(L~) whereas ~o(L~)= 1. On 

the other hand, L I ~ ¢  L~. gives, by Lemma 7.5(d) and (g), that Z(L1)~LI~ 
which again yields the impossible Q}'o.~ N ~o(L1) .  Thus L* ;~ 3~,(O), and so 

Q~,> <= go(L,) = No(L,). 
We recall that [L~,Z(T)]=I and Ow(WT)=I,  whence, by (2.6), W =  

Nw(J(T))Cw(Z(T))-- Nw(J(T))Nw(G). Because Z(T)<  T,,~ and Z(T)<= 



140 P. ROWLEY Isr. J. Math. 

Z(J(T)) ,  we have [Z(J(T)), P] # 1. Now W = Wo and so, applying (2.3)(ix) to 

Z(J(T))Nw(J(T))  we have that [Z(J(T)), P] ~ Z(J(T))Nw(J(T)).  With the aid 

of (2.12) it follows that [O,~,(LIT),[Z(J(T)), p]] = 1 from which we infer that 

either O,~,(L~ T) <-_ ~L,(W) or W = Nw(L~). Evidently the former holds and so, as 

~'L,(W) = 1, we may assert that L, is star-covered. 

Now No(L~) normalizes Ow(WO)N Nw(L,)>-_(Ow(WO))~, and so, since 

Oo, = 1, 

W = Nw(L~)Cw(No(L~)). 

Set /21 = LI/O(LO. Then /~l = L, LI. as L~ is star-covered. Since Qo. = 1 and 

O'~> <-- No(L,), /7,~ = ( / ~ l ) o - C / 7 . , ( O o - )  = (/~,)'rCi'l(Or). Now 

Cr,(O~), Cw(No(L2)) <--- (Co(O,,))~ .... I 

implies, as W = Nw(LOCw(No(L2)), CL,(O~) -< ~L,(W)= 1. Hence L,, = (/~)~ 

and, similarly, /~ = (/~1),. Therefore L~ = L ~  by [Theorem 5.1.4; 2]. This, by 

(2.3)(xi) and (2.21)(v), contradicts the deduction L~Q# QL,. 
With this contradiction we have established Lemma 12.3. 

LEMMA 12.4. Suppose TL~ = LiT where i = 2 or 3. Then L1L~ = L~L1. 

PROOF. We shall show that the assumption LIL~# L~L~ leads to a contradic- 

tion. Without loss of generality we may take i = 2. We recall that [Z(T),  Ll] = 1, 

that TL~ = L , T  and that Y_--< Op = O* # O. 

Now, by Theorem 8.1, we see that at least one of L~O = OLt and L20 = OL2 
must occur. We shall examine these possibilities in a moment. But first we state 

two observations. 

(12.1) Suppose L~O = OLI holds. Then 

(i) O.,(L, T) <-_ L,~ ; 
(ii) [O~,(L,T), T] = 1; and 

(iii) LI is star-covered. 

If (say) [O~,(LIT), or] # 1 then, appealing to Lemma 5.8(c), we have one of 

T~ =<X and Oq(OLO<= Y holding. The former forces TO = OT (see Lemma 

7.8) and the latter gives O = Oq(OLO0* = YO* = Oo which is not possible. So 

O,,(L~ T) <= LI. and likewise O~,(LI T) <= L~., so giving (i). Now part (ii) follows 

from (i) by (2.3)(xi) and part (iii) from (i), Theorem 4.4 and Lemma 3.3(vii). 

(12.2) Suppose L20 = QL2 holds. Then 

(i) O = YCo(L2); 
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(ii) O~(L2T)= 1 and so L2 is star-covered; and 

fiii) L2 = C~(Z(T))N~(J(T)). 

Part (i), since Y=> O~, L2~ = 1, and TL2 = L2T is just a consequence of 

Lemma 5.8(e). While (ii) follows immediately from (i) and (2.6) yields (iii). 

Case 1. QLI= LIQ and QL2= L2Q 
Since, by assumption, L1L2 ~ L2L~ we have at least one of L~. <= NL,(L2') and 

L2. <-_ N~(L,) with 932(Tr~,Tr2)={L,N~(L,),L2NL,(L2)}. First we consider the 

possibility L2T =< N~(LI). Applying Lemma 5.8(e) to L1, L2 and O (since 

(L2)~'o~> =< N~(L,) = ~ ( L z )  and 0 ~  = 1) gives L2 = N~(L,)C~(O). So forcing 

Oq(OL~) = 1 to hold. Hence O = Op by (2.13), a contradiction. 

Now we consider L,. _-< NL,(L2). Applying Lemma 5.81b) to the triple 0 ,  L1 

and T we obtain (as L~,, = 1 and X _-> T,) 

02( TL1) = Co~,TL,)(L,)( O2( TL,) (3 X). 

Employing Lemma 5.8(e) on the same triple yields (since O~'o~--<- Y) that 

Oq( OL,) = Co,(oL,)([L1, o"rl)( Oq( OL1) f3 Y). 

Because O=OpOq(OL,), [ L , , o n - ] ~ l  and O ~ Q ,  we conclude that 

Co([L,, or])  Z Y, and therefore 02(TL,) <= X holds. 

From (12.1) we have that L~ is star-covered and so NL,(L2)<= L~ (else L~ 

would not be star-covered). Thus L~ = L* = L~. Consequently, using (2.3)(ix), 

T= T~.O2(TL~)= T~X. This contradicts Lemma 7.10(g) and thus we have ruled 
out case 1. 

Case 2. QL2 = L2Q and QL, ~ LIQ 
First we examine the possibility L * _-< NL~(Q). Since, by Lemma 7.10, Z(T)<= 

NT(Q), we have Z(T) normalizing O,,,(LIT)NNL,(Q). So O=,(L~T)= 
Co.,~L,T)(Z(T))(O,,(L~T)fqNL,(Q)) by (2.14)(ii). Thus L~=L*O,,,(LaT)= 
NL,(Q)CL,(Z(T)). From Lemma 7.10(f) [Z(T) ,  Y] = 1 and so the shape of 

~ (~1 ,  q) forces L1 = NL,(O). 

Therefore we may assume O ~'~ _-< No(L~) holds. Observe that O = YNo(L~) 
is impossible. For then O = YNo(L~)= OpNo(L 0 whence, by Lemma 7.6 and 

(2.3)(ix), 

[O,p]  = [No(L,),p] <= Co(L,). 

So (Na([O, p]))(,,,,} => Q, La, which is not the case. In particular, this means that 

L~. <=NL,(L2) is untenable because, since L~.~NL,(Q), L~. <-NL,(L2) would 

imply Co(L2)<= No(L,) which then implies O = YNo(L,) by (12.2)(i). 
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Therefore L2. < NL2(L1) holds. By (12.2) L2 is star-covered and so N~(L1)<-_ 
L2, = L* = L2. Hence NLI(L2)= 1 as L1, = 1. Now N~o(LI) > (L2Q)~'o~> and so 

(using Corollary 5.4 and (2.14)(ii)) L2 = N~(L~)CLANo(L1)). Clearly we must 

have Co(L~) = 1. 
Because L2--L2,, T = TpOdTL2). Thus 02(TL2)~ X. So, by Lemma 7.10(c), 

(Z(O2(TL2)))p = 1. Therefore Z(O2(TL2))O,~(TL~ 1 admits p fixed-point-freely. 

So [Z(Oz(TL2)), O,,(TL~)] -- 1 and thus O=,(TL1) < NL,(L2) -- 1. Therefore L1 is 

star-covered by Theorem 4.4. Recalling that Q~o~> < No(L,) and Co (G)  = 1 we 

see, using Lemma 7.6(iii)(c), that Q = Qo- With this contradiction we have 

disposed of case 2. 

Case 3. QL~= L1Q and QL2# LzQ 
Combining the facts Q~'o~>--< Y < Qo and Q = QoOq(OLI) with Lemma 5.8(b) 

(applied to L~, Q and T ) w e  obtain Q = QpCo([L~, or]). A further application 

of Lemma 5.8(b), since L1, = 1 and Tp _-< X, yields 

Off TL,) = Co2~rL,~(L,)( O2( TL,) f3 X). 

Since [Ll, Cr'i']# 1 (otherwise LIL2=L2L,) and Q #  Oo we may infer that 

0 2( TL t ) <-_ X. 
The possibility that L* _-< N~(Q) may be eliminated as in case 2. So Q~'~> _-< 

No(L2). 
We assert that O #  OpNo (L2). For O = OpNo (L2) when combined with (see 

(2.13)) No(L2)= Co(Lz)(No(L2))~ gives O = OpO~Co(L2)= OpCo(L2), and so 

[ O , p ] _  -< Co(L2). As in case 2 this leads to the untenable O = Oo. 

Suppose, for the moment, that L2, < N~(L~). Then, using (2.3)(viii) 

L2., Co([L,, r]')_--< (No ([L,, z]))(~.q}. 

Thus either [L,, z] = 1 or Co([L,, z]!)<= No(L2). The latter would give Q = 

QpCo([L,,~rr])=QNo(Lz). So L , = L t .  Consequently, by (2.3)(ix), T =  

T.Oz(TL,) = T,X, which is contrary to Lemma 7.10(g). 

While L~. <-_ NL,(L2) implies, as L~ is star-covered by (12.1), that L1 = L~' = 

L , .  This then gives T = 02(TL1)T~ = XT~, again contradicting Lemma 7.10(g). 

This completes case 3 and also finishes the proof of Lemma 12.4. 

We introduce the following notation: 

/~0 = (P 1 P is an a-invariant Sylow p-subgroup of G of type • with p # 2) 

LEMMA 12.5. (i) /~0 is an a-invariant soluble Hall subgroup of G of odd order. 
(ii) L23/~,o =/~0L23 is an a-invariant soluble Hall subgroup of G. 
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PROOF. (i) This follows from Hypothesis 12.1 and (2.4). 

(ii) Let W be an a-invariant Sylow subgroup of Lo. By (2.4) and (2.5) it 

suffices to show that WLz3 -- L23 W. From Lemma 10.8(ii) O permutes with L23. 

So we may suppose W ~  O. As O / O p  = 0 "  we have Oq(OW)~ 1 by (i) and 

Corollary 4.5. Since, by (2.8), [O, L~,3] = 1 this yields that WL,_3 = Lz3W. 

LEMMA 12.6. Suppose TLi = LiT where i = 2 or 3. Then L = Lo. 

PROOF. We break the proof into two parts depending on whether LiO~ QL 
or GO = QL. Without loss of generality we take i = 2. 

Case 1. L2Q~ QL2 
So, by Corollary 7.4, one of L* _-< ~L.(Q) and Q~,,)<= @o(L2) must hold. If the 

former periains, then ~(7r2, q) = {L2, NL2(Q)Q}. Since, by Lemma 7.10, Z(T)  <= 
N~(O) we have Z(T)  normalizing 

O,2(L~_ T) N Nr~(Q) >= (0,2(L2T))*. 

Thus L2 = Ca(Z(T))N~(Q) by (2.14)(ii) and Corollary 4.5. Recall from Lemma 

7.10 that [Z(T),  @o(T)] = 1 which, when combined with the shape of ~)~(7r2, q) 

and the fact that @ o ( T ) ~ l ,  forces L2=Na(Q).  Hence we conclude that 

Q~o,> <= @o(L2) holds. Thus Q* = Q~ <- ~o(G), and so ~(~r2, q) = 

{L2No(L2), Q} by Lemma 5.1(d) and (2.21)(vi). 
Now, since Q* Z Y we infer, with the aid of (2.7), that T = 02(TL2)X. Thus, 

in view of Lemma 7.10(c), we have (Z(O~_(TL2)))~ = 1. Hence, by (2.11), 

[[L2, p], Z(O2(TL2))] = 1. Suppose [L2, p ]  ~ 1. Then we have, using (2.3)(viii), 

(No ([L2, p ]))12.p} => Z(O2(TL2)), Op. 

Hence Z(O2(TL2)) < X and, furthermore, Z(O2(TL2)) normalizes Oq(QX)N 
No([L2, p])( ~ Oq(OX)*). Therefore 

Oq( OX) = Co~(ox)(Z( Oz( TL2)))( Oq( QX) n No([ Lz, p])), 

and so 

Q = QpOq(QX) = QpCo (Z(O2(TL2)))No ([L2, Pl) 

= QpYNo([L2, Pl) 

= No([L2, Pl)- 

But this clearly contradicts the supposition QL2 ~ L2Q. Thus, when QL2 ~ L2Q, 

we have shown that L2 = L2. 
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Case 2. L2Q = QL2 
Clearly we may suppose that L2# 1. First we note that (L2T)Q# G (and 

hence T(L2Q)# G also). For suppose (L2T)O = G. Then O,2(L2Q)= 1, for 

otherwise (O,~2(LQ)) G would be a non-trivial proper c~-invariant normal sub- 

group of G. Thus Q ~ QL2 by (2.10)0). Since Z(T)  < NT(Q) we then have 
(Z(T)) c =  (Z(T)) °L2< NG(Q)# G, contrary to (G,(a))  satisfying Hypothesis 

III. 

Now a double application of Lemma 5.8(a) to the triple T, L2 and Q gives 

O2(TL2) = C02(TL2)([L2, p])(O2(TL2) ~ X ) ,  and 

Oq (QL2) = Co4~o~)(L2)( Oq ( OL2) fq Y'). 

Consequently (9 = Q*Oq(OL2)= OoCo(L2). Since Q #  Oo and Y _-< Oo, we may 

assert that T =  02(TL2)X by (2.7). Therefore we have T =  CT([L2, p])X. 
Because Q #  Qo and TO #  QT the only possible conclusion is [L2, p ]  = 1. This 

completes case 2, and the proof of the lemma. 

The next result is an immediate consequence of Lemma 12.6. 

LEMMA 12.7. Let T be of n-p type I l l  with respect to O. If both L2 and L3 
permute with T, then L2L3 = L3L2. 

PROOF. From Lemma 12.6 we have L2, L3 < Go, and so, since Go is soluble, 

the lemma follows. 

LEMMA 12.8. Let U be an a-invariant Sylow u-subgroup of G of type • and 
n-p type IV. If TLi = LiT and Q G#  GQ where i = 2  or 3, then ULi# GU. 

PROOF. Suppose the lemma is false. So GU = UL,. By Lemma 12.5(i), as 

u # 2 ,  we have UO = QU. Since TG = LiT, from Lemma 12.6, Li = Lip. By 

(2.3)(ix) this gives [ U, p]~  G U. Moreover, since U* = Uo # U by Lemma 7.10, 

Corollary 4.5 implies that 1 # [U, p] <= Ou(UQ). Considering (No([U, p]))~,~,.q} we 

obtain Oq(QU)<= ~o(G). Because Li = Li, we further have Qo <= ~o(Li), and 

so Q = QpOq (QU) < ~o(L,). With this contradiction the lemma is verified. 

LEMMA 12.9. Let W be an a-invariant Sylow w-subgroup of G of type • with 

w # 2. If WT = TW, then WL2 = L2 W and WE3 = L3 W. 

PROOF. Suppose that (say) WL2 # Lz W and argue for a contradiction. From 

Lemma 12.50) we have WQ = QW. We first establish that 

(12.3) O,(WQ)<-Nw(L2) and W~)<=Nw(L2) cannot hold. 
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Suppose Ow (WO), W~pT~ <= Nw(L2) did hold. Then, by Lemmas 4.6 and 7.6 
and Corollary 4.5, W =  W,. Hence, employing (2.3)(ix), we have T =  
02(TW)Zr. Since (TW)O~ G ~  T(WO), Lemma 5.8(b) yields that 

02(TW) = Co~,Tw,([ W, p])(X N 02(TW)) and 

oq( o w )  = Coq, ow,([ w. n o,(  ow)) .  

Thus T = T~XCT([W,p]) and Q = Co([W,,r])Q o. By Lemma 7.10 Q~ Qo and 
T~ T,X and so we deduce that [W,p]A[W,~-]=I. Therefore W =  WpW~. 
Employing (2.10)(ii) and Lemma 6.1 yields that G possesses a normal w- 
complement which, since W~ 1, is contrary to Hypothesis III holding. This 
verifies (12.3). 

Now suppose that L20 = OL2. Since O F  Qp = Q*, O , ( Q W ) ¢  1 by Corol- 

lary 4.5. Hence L * _-< N~_~(W) = ~L~(W) is untenable by Lemma 5.8( 0. Therefore 
W~,~<= Nw(L2)= ~w(L2). Since L2,~ ~ : ( W )  by Corollary 7.4 and 

Oq(QL2) ~ 0~, Lemma 5.8(c)implies that Ow (WQ)<= Nw(L2). From (12.3)we 

infer that L~O;~ QL2. In view of Lemma 10.9 this gives TL2 = L2T and so, by 

Lemma 12.6, L2=L2o. Clearly we then have W~o~<=Nw(L2)and Q~'o,~_- < 

No(L2) = ~o(L~). Also we note that 1 ~ Q, <= [No(L~_),po'] <= Co(L2). Using 
(2.14)(i) we deduce that 

O~ (WO) = Co~, wo)([No (L2), p ])(Ow (WO) A Uv¢ (L2)). 

Since 1 ~ [No(L~),p] <= Co(L2) (otherwise Q = Oo by (2.3)(v)) this gives 
O~(WO)_ -< Nw(L2). By (12.3) we have a contradiction. 

The proof of Lemma 12.9 is complete. 

We are now in a position to prove Theorem 12.2. 

PROOF OF THEOREM 12.2. Assume Hypotheses III and 12.1 hold, and argue 
for a contradiction. We introduce the following notation: 

i ~ = ( W I W is a-invariant Sylow subgroup of/Zo with TW = WT), 

£?, = (W ] W is a-invariant Sylow subgroup of/~.0 with T W ~  WT). 

Also H will denote the subgroup of G generated by /~,~ and those of 

{L~, Ljk I i, L k E ~} which permute with T, and K will denote the subgroup of G 

generated by/~¢~ and those of {L~, L~k ] i,L k ~ ~} which do not permute with T. 

The combined effect of (2.4), (2.5), Theorem 8.1 and Lemmas 10.8, 10.9, 12.3, 
12.4, 12.5, 12.7 and 12.9 yields 

(12.4) G = HK with H and K a-invariant soluble Hall subgroups of G. 
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We further observe that 

(12.5) Z(T) <- Nr(K). 

If LiTfl TG for i = 2  or 3, then, as Z(T)<= T~, rules out L* _~ N,,(T), we 

have Z(T)<= Nr(G) by Lemmas 7.6(iv) and 7.7(g). If L23T# TL23, then we may 

also deduce that Z(T) <- NT(L23). Appealing to Lemma 7.10 we then have (12.5). 

Lo K = KLo is a soluble Hall subgroup of G of odd order. (12.6) "* -+ 

Lemma 12.5 and 12.9 and (2.4) and (2.5) imply (12.6). 

We shall use H to denote the c~-invariant Hall (¢r(L~))'-subgroup of H. 

(12.7) (i) Let F be an a-invariant subgroup of G of odd order with F_>- K. 

Then F <- N~ (Z(J(K))) where J(K) denotes the Thompson sub- 

group of K;  note that Z(J(K)) is a non-trivial characteristic 

subgroup of K (see [1]). 

(ii) G = I2INo(Z(J(K))). 

(i) Since F>= K, F=(Ff'I  H)K. Because (G,(a)) satisfies Hypothesis Ill  

O~,(F) = 1 where ~¢ = ~r(K). Applying [Theorem 1; 1] we obtain Z(J(K))~ F 
from which (i) follows. 

(ii) This follows from (i) and (12.6). 

We present the proof in three steps: firstly when T permutes with both Lz and 

L3, secondly when T permutes with only one of L2 and L3, and finally when T 

permutes with neither of L2 and L3. In the first two cases we shall require the 

following result. 

(12.8) Suppose H = TLzLi where i = 2 or 3. Then 

(i) (02(TL))o = 1; and 
(ii) 02(TL) = [T,p] ~ TL,G. 

(i) By Lemma 12.6 L~ = G ° whence, using (2.3)(ix), r = 02(TG)T o. Hence 

02(TG)ZX  as To<=X. Suppose (02(rL,))o•l. Then Z(O2(TLi))<=X by 

Lemma 7.10(c). From Lemma 5.1(a) we conclude that either Z(OdTL))<= T~, 
or 02(TL)<=X. Thus Z(O2(TLi))<=T~,,, whence [Z(O2(TL,)),L,]=I by 

(2.3)(xi). Because 1 ~ Z(O2(TG))~ T, Z = Z(T)N Z(O2(TL,))¢ 1. Moreover, 

as [Z(T) ,  L~] = 1, Z <-_ Z(TL~G) = Z(/2I). Now (12.5) and (12.7)(ii) imply that 

Z G is a non-trivial proper a-invariant normal subgroup of G. From this 

contradiction we deduce that (O,_(TL))o = 1 must hold. 

(ii) Since Li=Go we have [T,p]<-_O~_(TL,) and so, by (2.3)(vii), 

[ T, p] ¢ OffTG) would contradict (i). Therefore [T, p] = O~_(TL~L,). By a well- 
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known property of soluble groups O~;(TL,Li)= O=~(TL~Li)O=;(L~L~). Since 

L1 =[Lhp]~L ,L , ,  O=~(TLIL~)=L~O2(TL~) and hence, by (i) and (2.2)(i), 

[Lh 02(TL~)] = 1. Consequently 02(TL,)~ TL~L~ and we have proved (ii). 

Case 1. TL2 = LzT and TL3 = L.~T 

If both of L2 and L3 permute with each a-invariant Sylow subgroup of Lo, 

then L 2 L 3 K  = L2L3L23Lo is an a-invariant soluble subgroup of G of odd order. 

Thus, by (12.4) and (12.7), G = (TL,)Nc(Z(J(K))). Since Z(T)<= Z(TL 0 and 

Z(T)  < - Na(Z(J(K))) we see that (G,(a)) cannot satisfy Hypothesis III. 

So we may suppose that at least one of L2 and L3 does not permute with each 

of the a-invariant Sylow subgroups of/Z;.  In view of Lemma 10.8(iv) we may 

assume that L 2 U /  UL2 and L~U = UL3 where U is some c~-invariant Sylow 

subgroup of /].o. We claim that L3 = t. Suppose L3~ 1. From Lemma 12.6 

L2 = L2, and L3 = L3. Therefore U* = Uo <- U~o~> <= ~u(L2). Since L3 / L3,,, by 

Lemma 6.1, we infer that O=,(L2L3)/1 by (2.13). Now the triple L2, L3 and U is 

at variance with the conclusion of Lemma 5.8(f). Thus L3 = 1, as claimed. So 

H = TLI L2. 
~ +  

Using (12.8) we now show that Y permutes with H=L~L~TLo. For 

[ T , p ] ~ T Y  and so (Nc,(lT, p]))~ ...... 2,q}=L~L2TY. That Y permutes with /-~o 
may be shown by using (2.26). 

Now LzO~ OL~ by Lemma 12.8 and, since [L,, O~] = 1 (by Lemma 3.6(ii)), 

Z(Q)  <- No(L2). Since L2 = L2, and L3~ = 1, Z ( Q )  <= 0o,~. So Z(Q)  <= Y. Now 

K = L23Lo admits o-~- fixed-point-freely and so, by (2.10), has Fitting length at 

most 2. From Z ( Q ) <  Qo~ we may infer that N~:(Z(O))= C~(Z(Q)). Hence 

g = N,,(Q)O¢(K) = C,,(Z(Q))O,,(K). 

Because Q / Q o = Q * ,  O q ( K ) ~ l  by Corollary 4.5, and so I ~ Z ~ =  

Z(O) f3 0q(K) <-_ Z(K). 
Therefore G = (HY)CG(Z,). Since H Y ~  G and Z~ =< Y, Z~ is a non-trivial 

proper a-invariant normal subgroup of G, and with this contradiction case 1 is 
eliminated. 

Case 2. Only one of L: and Ls permutes with T 

Since the arguments are symmetric in L: and Ls, we will suppose that 

L2T = TL2 and L 3 T ~  TL3. Note that /-)= TL~L2. 

If it were the case that L2 did not permute with Q, then, using (12.8) as in case 

1, we obtain G = (HY)C~(Z2) where Z2 is a non-trivial a-invariant subgroup of 

Y. So we may suppose L20 = OL2, and thus L2 permutes with L~- by Lemma 
12.8. 



148 P. ROWLEY Isr. J. Math. 

We may further suppose that L2L3 ~ L3L2. For L2L3 = L3L2 would imply, 
using (12.7)(i), that G = (TL1)Nc(Z(J(K)I) which, using (12.5), gives the usual 

contradiction. 

So the situation is as follows: L2T= TL2, L3T~ TL3, L2L3~L3L2 and O 
permutes with both L2 and L3. We proceed to derive a contradiction from this 
configuration. 

Because L2 = Lzo, by Lemma 12.6, [O, p] ~ OL2. Since [O, p] ~ 1 and [0, p] --< 

Oq (OL3)we may infer that 0,3(0L3 ) <= NL3(L2)= ~(L2'). Now (N~(NL~(L2)))* <= 
N~(L2) is not possible by Lemma 4.6, and so, as L3, <=N~(L~), we have 

Nt~(Lz)<= L3~ = L*. Thus L3 = O~3(OL3)L* = L3 . 
Clearly T~ =< ~T(L3). If it were the case that L3p < ~L~(T), then Lemma 7.7(e) 

predicts L3~# L3. Hence T~'~,> < ~r(L3). From the fact that L3~ < N~(L2) but 
L3p~ ~ ( T )  we may assert, using (2.7),_ that T =  O2(TL2)~T(L3). Since T =  
02(TL2)T, and T, =< ~r(L3) we have ~r(L3)= T,(O2(TL2)fq ~v(L3)). 

We will now show that 02(TL2) fq 02(L3~T(L3)) = 1. Suppose that this does 
not hold. Then either Z(OdTL2))<= ~r(L3) or O=~(L3~r(L~)) <- ~ ( T ) .  Evi- 
dently the former must hold. Because 0 2 ( T L 2 ) ; ~ ( T )  [otherwise 
T = ToOdTL2)<= ~r(L3)) we may assert that Z(O2(TL~))<= T~,. As seen previ- 
ously this gives 1~  Z(O2(TL2))A Z(T)<=Z(TL,Z2) which, using (12.5) and 

(12.7), then yields a contradiction. Therefore OdTL2)fl 02(L3~r(L3))= 1. 
From 02(TL2)N 02(L3~r(L3)) = 1 we may conclude, since [~z(L3),o-]= < 

02(L3~r(L3)), that 02(TL2) fq ~(L3)  =< T~. Hence ~r(L3) = ToT~ and therefore 
[~T(L3), Or] ~ Tp. Since 1 ~ [Z(To), Orr] <= CT(O~3(L3~T(L3))), 02(L3~T(L3)) ~ 1. 
Consequently [~r(L3), Or] = 1 would force, by (2.3)(v), T = T~, which is contrary 
to TL3 ~ L3T. So ~r(L3) <- N~(I~'~(L~), o-])--<_ X by Lemma 7.10(c). But then 
T~ =< X which Lemma 7.8 shows to be impossible. This is the desired contradic- 

tion, and so case 2 is finished. 

Case 3. TL2~ L2T a n d  TL3~ L3T 
By (12.7) G = (TL,)N~(Z(J(K))) and so, by (12.5), Z(T) ° is a non-trivial 

proper a-invariant normal subgroup of G, against (G, (a)) satisfying Hypothesis 

III. 

The proof of Theorem 12.2 is complete. 

13. o~-Invariant Sylow subgroups of n-p type I, II, III and IV 

In this section we shall be working under the following hypothesis. 
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HYPOTHESIS 13.1. G possesses a-invariant Sylow subgroups of n-p types I, 

lI, III and IV. 

As in the two preceding sections our aim is to demonstrate the following 

theorem, which, in contrast to the first two cases, is proved by purely local 

considerations. 

THEOREM 13.2. Hypotheses 13.1 and III are incompatible. 

PROOE Suppose (G,(a))satisfies Hypotheses 13.1 and III. 

By Hypothesis 13.1 there exists some a-invariant Sylow q-subgroup Q of G 

of type • with respect to which T is of n-p type III. We may assume that 

Tp -<_ ~ r ( Q )  and O,,, Q, <= ~o(T),  and consequently, by Lemma 7.10, ~o(T)<= 
Qp = O * ~  Q and Z(T)=Z(T)o~.  Also, let P denote an a-invariant Sylow 

p-subgroup of G which is of n-p type I. By Lemma 10.5 P ~  Q. 
Suppose p ~  2. Let U be an a-invariant Sylow u-subgroup of G of type qt 

with respect to which P is of n-p type I. Note that Q ~  U ~  T by Lemma 10.2. If 

P Q ~  OP, then, since 2~{p,  q}, P is either of n-p type I or II with respect to Q. 
Lemmas 10.2 and 10.5 show that neither possibility can occur, and therefore 

PO = QP. But then Lemma 10.4 applied to P, Q and U predicts that p = 2, 

which is not the case. Hence p = 2. 

Thus we may suppose that T is the only a-invariant Sylow subgroup of G of 

n-p type I. So T is of n-p type I with respect to the a-invariant Sylow 

u-subgroup U (say). So T* <= NT(U). Since u ~  2 ~  q neither U nor Q can be of 

n-p type I or III and thus UQ = QU. Now we consider ~ou(T,,). Note that 

T,,~ou( T,, ) ~ G since T,, < NT( U) ~ T. So ~ou( T~ ) = ~o ( T~ )~t,( T~, ) by (2.26). 
Clearly Q~ <-<_ ~o(T~) and also, since T,, <NT(U),  ;go(T,,) = U. So Unormal- 
izes Oq(QU) f) ~o(T,,) >= (Oq(QU)),,. Whence, by (2.14)(i), 

oq( o u )  = Co,,ov ([ u, o-l)( Q ( o u )  n o,o )). 

By Lemma 7.8 [U, o,] ~ i and so either T,, <= ~T(Q) or Co([U, ~r]) < ~o(T). The 

former is untenable by Lemma 7.8 and so Co ([ U, o" ]) <= ~o(T). Moreover 

T~Z ~T(Q) implies ~o(T,,)<= ~o(T)  and so Oq(QU)<= ~o(T). But then, using 
Corollary 4.5, 

o = o (ou)o* =  o(T)O  = 

whereas O ~  Op. 

With this contradiction we have established Theorem 13.2. 

Combining Theorems 11.2, 12.2 and 13.2 gives Theorem 10.1. 
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